how speakers work

December 9, 2006 3:55am CST
could you tell me of how a speaker works in an electrical circuit
1 response
• India
9 Dec 06
In any sound system, ultimate quality depends on the speakers. The best recording, encoded on the most advanced storage device and played by a top-of-the-line deck and amplifier, will sound awful if the system is hooked up to poor speakers. A system's speaker is the component that takes the electronic signal stored on things like CDs, tapes and DVDs and turns it back into actual sound that we can hear. A small speaker set for computer use In this article, we'll find out exactly how speakers do this. We'll also look at how speaker designs differ, and see how these differences affect sound quality. Speakers are amazing pieces of technology that have had a profound impact on our culture. But at their heart, they are remarkably simple devices. Inside your ear is a very thin piece of skin called the eardrum. When your eardrum vibrates, your brain interprets the vibrations as sound -- that's how you hear. Rapid changes in air pressure are the most common thing to vibrate your eardrum. An object produces sound when it vibrates in air (sound can also travel through liquids and solids, but air is the transmission medium when we listen to speakers). When something vibrates, it moves the air particles around it. Those air particles in turn move the air particles around them, carrying the pulse of the vibration through the air as a traveling disturbance. To see how this works, let's look at a simple vibrating object -- a bell. When you ring a bell, the metal vibrates -- flexes in and out -- rapidly. When it flexes out on one side, it pushes out on the surrounding air particles on that side. These air particles then collide with the particles in front of them, which collide with the particles in front of them and so on. When the bell flexes away, it pulls in on these surrounding air particles, creating a drop in pressure that pulls in on more surrounding air particles, which creates another drop in pressure that pulls in particles that are even farther out and so on. This decreasing of pressure is called rarefaction. In this way, a vibrating object sends a wave of pressure fluctuation through the atmosphere. When the fluctuation wave reaches your ear, it vibrates the eardrum back and forth. Our brain interprets this motion as sound. We hear different sounds from different vibrating objects because of variations in: * Sound-wave frequency - A higher wave frequency simply means that the air pressure fluctuates faster. We hear this as a higher pitch. When there are fewer fluctuations in a period of time, the pitch is lower. * Air-pressure level - This is the wave's amplitude, which determines how loud the sound is. Sound waves with greater amplitudes move our ear drums more, and we register this sensation as a higher volume. A microphone works something like our ears. It has a diaphragm that is vibrated by sound waves in an area. The signal from a microphone gets encoded on a tape or CD as an electrical signal. When you play this signal back on your stereo, the amplifier sends it to the speaker, which re-interprets it into physical vibrations. Good speakers are optimized to produce extremely accurate fluctuations in air pressure, just like the ones originally picked up by the microphone. In the next section, we'll see how the speaker accomplishes this. In the last section, we saw that sound travels in waves of air pressure fluctuation, and that we hear sounds differently depending on the frequency and amplitude of these waves. We also learned that microphones translate sound waves into electrical signals, which can be encoded onto CDs, tapes, LPs, etc. Players convert this stored information back into an electric current for use in the stereo system. A speaker is essentially the final translation machine -- the reverse of the microphone. It takes the electrical signal and translates it back into physical vibrations to create sound waves. When everything is working as it should, the speaker produces nearly the same vibrations that the microphone originally recorded and encoded on a tape, CD, LP, etc. Traditional speakers do this with one or more drivers. A driver produces sound waves by rapidly vibrating a flexible cone, or diaphragm. * The cone, usually made of paper, plastic or metal, is attached on the wide end to the suspension. * The suspension, or surround, is a rim of flexible material that allows the cone to move, and is attached to the driver's metal frame, called the basket. * The narrow end of the cone is connected to the voice coil. * The coil is attached to the basket by the spider, a ring of flexible material. The spider holds the coil in position, but allows it to move freely back and forth. Some drivers have a dome instead of a cone. A dome is just a diaphragm that extends out instead of tapering in. A typical speaker driver, with a metal basket, heavy permanent magnet and paper diaphragm The voice coil is a basic electromagnet. When the electrical current flowing through the voice coil changes direction, the coil's polar orientation reverses. If you've read How Electromagnets Work, then you know that an electromagnet is a coil of wire, usually wrapped around a piece of magnetic metal, such as iron. Running electrical current through the wire creates a magnetic field around the coil, magnetizing the metal it is wrapped around. The field acts just like the magnetic field around a permanent magnet: It has a polar orientation -- a "north" end and and a "south" end -- and it is attracted to iron objects. But unlike a permanent magnet, in an electromagnet you can alter the orientation of the poles. If you reverse the flow of the current, the north and south ends of the electromagnet switch. This is exactly what a stereo signal does -- it constantly reverses the flow of electricity. If you've ever hooked up a stereo system, then you know that there are two output wires for each speaker -- typically a black one and a red one. The wire that runs through the speaker system connects to two hook-up jacks on the driver. Essentially, the amplifier is constantly switching the electrical signal, fluctuating between a positive charge and a negative charge on the red wire. Since electrons always flow in the same direction between positively charged particles and negatively charged particles, the current going through the speaker moves one way and then reverses and flows the other way. This alternating current causes the polar orientation of the electromagnet to reverse itself many times a second. So how does the fluctuation make the speaker coil move back and forth? The electromagnet is positioned in a constant magnetic field created by a permanent magnet. These two magnets -- the electromagnet and the permanent magnet -- interact with each other as any two magnets do. The positive end of the electromagnet is attracted to the negative pole of the permanent magnetic field, and the negative pole of the electromagnet is repelled by the permanent magnet's negative pole. When the electromagnet's polar orientation switches, so does the direction of repulsion and attraction. In this way, the alternating current constantly reverses the magnetic forces between the voice coil and the permanent magnet. This pushes the coil back and forth rapidly, like a piston. When the electrical current flowing through the voice coil changes direction, the coil's polar orientation reverses. This changes the magnetic forces between the voice coil and the permanent magnet, moving the coil and attached diaphragm back and forth. When the coil moves, it pushes and pulls on the speaker cone. This vibrates the air in front of the speaker, creating sound waves. The electrical audio signal can also be interpreted as a wave. The frequency and amplitude of this wave, which represents the original sound wave, dictates the rate and distance that the voice coil moves. This, in turn, determines the frequency and amplitude of the sound waves produced by the diaphragm. Different driver sizes are better suited for certain frequency ranges. For this reason, loudspeaker units typically divide a wide frequency range among multiple drivers. In the next section, we'll find out how speakers divide up the frequency range, and we'll look at the main driver types used in loudspeakers. In the last section, we saw that traditional speakers produce sound by pushing and pulling an electromagnet attached to a flexible cone. Although drivers are all based on the same concept, there is a wide range in driver size and power. The basic driver types are: * Woofers * Tweeters * Midrange Woofer Tweeter Midrange Woofers are the biggest drivers, and are designed to produce low frequency sounds. Tweeters are much smaller units, designed to produce the highest frequencies. Midrange speakers produce a range of frequencies in the middle of the sound spectrum. And if you think about it, this makes perfect sense. To create higher frequency waves -- waves in which the points of high pressure and low pressure are closer together -- the driver diaphragm must vibrate more quickly. This is harder to do with a large cone because of the mass of the cone. Conversely, it's harder to get a small driver to vibrate slowly enough to produce very low frequency sounds. It's more suited to rapid movement. To produce quality sound over a wide frequency range more effectively, you can break the entire range into smaller chunks that are handled by specialized drivers. Quality loudspeakers will typically have a woofer, a tweeter and sometimes a midrange driver, all included in one enclosure. Of course, to dedicate each driver to a particular frequency range, the speaker system first needs to break the audio signal into different pieces -- low frequency, high frequency and sometimes mid-range frequencies. This is the job of the speaker crossover. The most