antennas

India
September 29, 2006 12:57am CST
history of antenna types of antenna applications
4 responses
@shounak (370)
• India
9 Oct 06
A "hertz antenna" is a set of terminals that does not require the presence of a ground for its operation. A "loaded antenna" is an active antenna having an elongated portion of appreciable electrical length and having additional inductance or capacitance directly in series or shunt with the elongated portion so as to modify the standing wave pattern existing along the portion or to change the effective electrical length of the portion. An "antenna grounding structure" is a ground for establishing a reference potential level for operating the active antenna. It can be any structure closely associated with (or acting as) the ground which is connected to the terminal of the signal receiver or source opposing the active antenna terminal, (i.e., the signal receiver or source is interposed between the active antenna and this structure).
@shounak (370)
• India
9 Oct 06
The words "antenna" (plural: antennas [1]) and "aerial" are used interchangeably throughout this article. The origin of the word antenna relative to wireless apparatus is attributed to Guglielmo Marconi. In 1895, while testing early radio apparatus in the Swiss Alps at Salvan, Switzerland in the Mont Blanc region, Marconi experimented with early wireless equipment. A 2.5 meter long pole, along which was carried a wire, was used as a radiating and receiving aerial element. In Italian a tent pole is known as l'antenna centrale, and the pole with a wire alongside it used as an aerial was simply called l'antenna. Until then wireless radiating transmitting and receiving elements were known simply as aerials or terminals. Marconi's use of the word antenna (Italian for pole) would become a popular term for what today is uniformly known as the "antenna". [2]
@shounak (370)
• India
9 Oct 06
An antenna or aerial is an electrical device designed to transmit or receive radio waves or, more generally, any electromagnetic waves. Antennas are used in systems such as radio and television broadcasting, point-to-point radio communication, radar, and space exploration. Antennas usually work in air or outer space, but can also be operated under water or even through soil and rock at certain frequencies. Physically, an antenna is an arrangement of conductors that generate a radiating electromagnetic field in response to an applied alternating voltage and the associated alternating electric current, or can be placed in an electromagnetic field so that the field will induce an alternating current in the antenna and a voltage between its terminals. Some antenna devices (parabola, horn antenna) just adapt the free space to another type of antenna. Antennas were used for the first time, in 1889, by Heinrich Hertz (1857-1894) to prove the existence of electromagnetic waves predicted by the theory of James Clerk Maxwell. He even placed the emitter dipole in the focal point of a parabolic reflector. He published his work and installation drawings in Annalen der Physik und Chemie (vol. 36, 1889).
@vipul20044 (5794)
• India
9 Oct 06
According to the advance of the radio wave's fields such as communications, broadcasting, radar and so on, many types of antenna systems have been invented The antenna is the most visible part of the satellite communication system. The antenna transmits and receives the modulated carrier signal at the radio frequency (RF) portion of the electromagnetic spectrum. For satellite communication, the frequencies range from about 0.3 GHz (VHF) to 30 GHz (Ka-band) and beyond. These frequencies represent microwaves, with wavelengths on the order of one meter down to below one centimeter. High frequencies, and the corresponding small wavelengths, permit the use of antennas having practical dimensions for commercial use. This article summarizes the basic properties of antennas used in satellite communication and derives several fundamental relations used in antenna TYPES OF ANTENNAS A variety of antenna types are used in satellite communications. The most widely used narrow beam antennas are reflector antennas. The shape is generally a paraboloid of revolution. For full earth coverage from a geostationary satellite, a horn antenna is used. Horns are also used as feeds for reflector antennas. In a direct feed reflector, such as on a satellite or a small earth terminal, the feed horn is located at the focus or may be offset to one side of the focus. Large earth station antennas have a subreflector at the focus. In the Cassegrain design, the subreflector is convex with an hyperboloidal surface, while in the Gregorian design it is concave with an ellipsoidal surface. The subreflector permits the antenna optics to be located near the base of the antenna. This configuration reduces losses because the length of the waveguide between the transmitter or receiver and the antenna feed is reduced. The system noise temperature is also reduced because the receiver looks at the cold sky instead of the warm earth. In addition, the mechanical stability is improved, resulting in higher pointing accuracy. Phased array antennas may be used to produce multiple beams or for electronic steering. Phased arrays are found on many nongeostationary satellites, such as the Iridium, Globalstar, and ICO satellites for mobile telephony.