what do u mean by

India
January 5, 2007 12:29pm CST
flip flops
1 response
@asa010 (1128)
• India
5 Jan 07
ofcourse all know its shoes or whatever but truly flip-flops are engineering terms which are used as memory cells like a D flip flop which has a input,output , preset and clear with a timer[optional]
• India
5 Jan 07
good answer u really know it...!!!
• India
5 Jan 07
for ur info check this out A flip-flop in combination with a Schmitt trigger can be used for the implementation of an arbiter in asynchronous circuits. Clocked flip-flops are prone to a problem called metastability, which happens when a data or control input is changing at the instant of the clock pulse. The result is that the output may behave unpredictably, taking many times longer than normal to settle to its correct state, or even oscillating several times before settling. Theoretically it can take infinite time to settle down. In a computer system this can cause corruption of data or a program crash. In many cases, metastability in flip-flops can be avoided by ensuring that the data and control inputs are held constant for specified periods before and after the clock pulse, called the setup time (tsu) and the hold time (th) respectively. These times are specified in the data sheet for the device, and are typically between a few nanoseconds and a few hundred picoseconds for modern devices. Unfortunately, it is not always possible to meet the setup and hold criteria, because the flip-flop may be connected to a real-time signal that could change at any time, outside the control of the designer. In this case, the best the designer can do is to reduce the probability of error to a certain level, depending on the required reliability of the circuit. One technique for suppressing metastability is to connect two or more flip-flops in a chain, so that the output of each one feeds the data input of the next, and all devices share a common clock. With this method, the probability of a metastable event can be reduced to a negligible value, but never to zero. The probability of metastability gets closer and closer to zero as the number of flip-flops connected in series is increased. So-called metastable-hardened flip-flops are available, which work by reducing the setup and hold times as much as possible, but even these cannot eliminate the problem entirely. This is because metastability is more than simply a matter of circuit design. When the transitions in the clock and the data are close together in time, the flip-flop is forced to decide which event happened first. However fast we make the device, there is always the possibility that the input events will be so close together that it cannot detect which one happened first. It is therefore logically impossible to build a perfectly metastable-proof flip-flop.